Amplitude-Aided CPHD Filter for Multitarget Tracking in Infrared Images
نویسندگان
چکیده
The cardinalized probability hypothesis density (CPHD) filter is a powerful tool for multitarget tracking (MTT). However, conventional CPHD filter discriminates targets from clutter only via the motion information, which is not reasonable in the situation of dense clutter. In the tracking, the amplitude of target returns is usually stronger than those coming from clutter, so the amplitude information can be used to enhance the discrimination between targets and clutter. Based on this idea, this paper proposes an amplitude-aided CPHD filter for the MTT in distant infrared (IR) surveillance. First, we model the amplitude of targets and clutter in IR scenarios respectively. For distant IR scenarios, the point spread function (PSF) is used to model the imaging of the point target. The center intensity of the PSF is unknown in practice, and the maximum likelihood estimation (MLE) method is adopted to estimate the target center intensity via the intensities of the latest target detections. Then a likelihood function for MTT is established, and using this likelihood function, a new CPHD recursion is derived, which can distinguish different targets and clutter by the correspondence weight. In the implementation, we adopt the Gaussian mixture (GM) approach to implement the amplitude-aided CPHD filter to achieve efficient performance. In numerical experiments, the results show that the proposed method attains a significant improvement in performance over that only using location measurements.
منابع مشابه
"Statistics 102" for Multisource-Multitarget Detection and Tracking
This tutorial paper summarizes the motivations, concepts and techniques of finite-set statistics (FISST), a systemlevel, “top-down,” direct generalization of ordinary single-sensor, single-target engineering statistics to the realm of multisensor, multitarget detection and tracking. Finite-set statistics provides powerful new conceptual and computational methods for dealing with multisensor-mul...
متن کاملClassification Aided Cardinalized Probability Hypothesis Density Filter
Target class measurements, if available from automatic target recognition systems, can be incorporated into multiple target tracking algorithms to improve measurement-to-track association accuracy. In this work, the performance of the classifier is modeled as a confusion matrix, whose entries are target class likelihood functions that are used to modify the update equations of the recently deri...
متن کاملHybrid multi-Bernoulli CPHD filter for superpositional sensors
We propose, for the superpositional sensor scenario, a hybrid between the multi-Bernoulli filter and the cardinalized probability hypothesis density (CPHD) filter. We use a multi-Bernoulli random finite set (RFS) to model existing targets and we use an independent and identically distributed cluster (IIDC) RFS to model newborn targets and targets with low probability of existence. Our main cont...
متن کاملMulti-Bernoulli filter and hybrid multi-Bernoulli CPHD filter for superpositional sensors
Superpositional sensor model can characterize the observations in many different applications such as radio frequency tomography, acoustic sensor network based tracking and wireless communications. In this paper we present two filters based on the random finite set (RFS) theory the multi-Bernoulli filter and its variant the hybrid multi-Bernoulli CPHD filter for superpositional sensors. We prov...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014